... where LIFE SCIENCE
meets PHYSICS

MPI-CE_Blattkäferlarven reichern Giftvorstufen aus der Blattnahrung dank der Aktivität von zellulären ABC-Transportern an

Wissenschaftler des Max-Planck-Instituts für chemische Ökologie in Jena haben jetzt einen entscheidenden Schrittmacher für die Anreicherung von Wehrsubstanzen in Blattkäferlarven entdeckt, mit denen die Tiere sich vor ihren Fraßfeinden schützen: ABC-Transportproteine, die in den Drüsenzellen der Insekten in großer Anzahl auftreten. Pappelblattkäfer der Art Chrysomela populi transportieren das mit der Blattnahrung im Darm aufgenommene Salicin über mehrere Zellbarrieren in ihr Wehrsekret, wo die Substanz in den Abwehrstoff Salicylaldehyd umgewandelt wird. Die Forschungsergebnisse beleuchten nicht nur die molekulare Evolution des Abwehrsystems in Blattkäferlarven, sondern tragen auch dazu bei, die zellbiologischen Grundlagen von Sequestrierungs- bzw. Speicherprozessen in tierischen Geweben aufzuklären. (eLIFE, 3. Dezember 2013, DOI: 10.7554/eLife.01096)

Larve des Pappelblattkäfers-228Larve des Pappelblattkäfers Chrysomela populi mit ausgestülpten Wehrdrüsen. (Foto: Anja Strauß, MPI Chem. Ökol.)

Nahrungsketten und wie man ihnen entkommt
Auch Käferlarven sind Teile von Nahrungsketten. Sie werden von räuberischen Insekten und Parasiten attackiert, beispielsweise Schwebfliegen und Wanzen. Um sich dagegen zu schützen, haben einige Blattkäferlarven einen interessanten Mechanismus entwickelt: Bei Gefahr stülpen sie blasenartig den abschreckenden Inhalt von Wehrdrüsen aus. Die Käferlarven bilden die Abwehrsubstanzen im Sekret aus chemischen Vorstufen ihrer pflanzlichen Nahrung; so sparen sie aufwendige eigene Biosynthesen. Beim Pappelblattkäfer ist diese Vorstufe das in Pappeln und Weiden enthaltene Salicin. Ein ausgeklügeltes Transportnetzwerk befördert die Vorstufen der Abwehrstoffe vom Darm bis in die Wehrdrüsen. Danach sind nur noch zwei enzymatische Schritte notwendig, um die Wehrsubstanz Salicylaldehyd in enorm hohen Konzentrationen zu speichern.

CpMRP: Ein in Drüsenzellen stark ausgeprägtes Gen
Anja Strauß, die ihre Doktorarbeit in der Abteilung Bioorganische Chemie des Max-Planck-Instituts für chemische Ökologie angefertigt hat, ist diesem Mechanismus auf die Spur gekommen. Sie hat Gen-Transkripte in den sekretorischen Zellen des Pappelblattkäfers Chrysomela populi untersucht und ist dabei auf ein Gen gestoßen, das im Vergleich zum Darmgewebe im Drüsengewebe rund 7000fach stärker exprimiert wird. Die Gensequenzanalyse ergab, dass die Wissenschaftlerin das Gen für ein sogenanntes ABC Transportprotein kloniert hatte. Solche den Stofftransport von Substanzen über Zellmembranen vermittelnden Proteine sind weit verbreitet und kommen in fast allen Organismen, vom Bakterium bis zum Säugetier, vor. Dort vermitteln sie unter anderem eine „multi drug resistance“, eine Resistenz gegenüber pharmazeutisch wirksamen Substanzen, indem sie giftige Stoffe, die einer Zelle gefährlich werden könnten, entweder aus der Zelle heraus oder innerhalb der Zelle in kleinste Zellorganellen transportieren und so aus dem Verkehr ziehen. Welche Rolle aber spielen ABC-Transporter in Blattkäferlarven und wie sind sie in den für diese Insekten so typischen Mechanismus der Gewinnung von Vorstufen für Abwehrgifte aus dem Blattgewebe involviert, fragte sich Wilhelm Boland, Direktor am Institut.

RNAi beweist die Schlüsselrolle des ABC-Transporters
Die darauf folgenden Experimente zeigten ein eindeutiges Bild: CpMRP − so bezeichneten die Wissenschaftler den Transporter − befindet sich in enorm großer Menge in den Membranen kleiner Bläschen, den Speichervesikeln innerhalb der Drüsenzellen. Sobald die Giftvorstufe, hier das Salicin, aus der Blattnahrung in die Zellen gelangt, wird es sofort und aktiv unter Verbrauch von ATP, also zellulärer Energie, in den zahlreich vorhandenen Vesikeln akkumuliert (daher rührt der Name ABC-Transporter: ATP-binding-cassette transporter). Die Vesikel wandern innerhalb der Drüsenzellen in Richtung des Reservoirs, wo sie sich mit einer Membranbarriere des großen Reservoirs verbinden und dabei ihren Inhalt ausschütten. Dort wird aus der Salicin-Vorstufe die Abwehrsubstanz Salicylaldehyd gebildet und bei Gefahr durch Ausstülpen des blasenartigen Reservoirs den feindseligen Insekten drohend präsentiert.

CpMRP fungiert bei diesem Vorgang als Schrittmacher: Dank seiner enorm hohen Transportkapazitäten erzeugt er ein Konzentrationsgefälle im Drüsengewebe, sodass selektiv über noch unbekannte Transportproteine aus der Körperflüssigkeit ständig neue Salicinmoleküle nachfließen können. Ein gezieltes Ausschalten des CpMRP Gens durch die RNAi Technik beweist zusätzlich die Schlüsselrolle des Transporters. Käferlarven, in denen der Transporter nicht mehr vorhanden war, konnten bei Gefahr keine Wehrsubstanz mehr ausstülpen.

„Interessant ist, dass die ABC-Transporter in den Drüsenzellen der Blattkäferlarven ein riesiges Netzwerk bilden, welches die Giftstoffe effizient abfängt und intrazellulär in Speichervesikeln ablegt“, so Anja Strauß. Jedoch: „Bei den Insekten handelt es sich nicht um eine Entgiftung, sondern vielmehr um die gezielte Anreicherung von Giftvorstufen, die die Tiere direkt aus der Nahrung beziehen, um sich dann „ökonomisch“ gegen ihre Feinde zur Wehr setzen zu können“.

Die Identifizierung des CpMRP-Transporters beleuchtet nicht nur die molekulare Evolution des Abwehrsystems in Blattkäferlarven, sondern bedeutet auch einen weiteren wichtigen Schritt, zellbiologische Grundlagen von Sequestrierungs- bzw Speicherprozessen aufklären zu helfen.

Originalveröffentlichung
Strauß, A., Peters, S., Boland, W., Burse, A. (2013). ABC transporter functions as a pacemaker for the sequestration of plant glucosides in leaf beetles. eLIFE, December 3, 2013, DOI: 10.7554/eLife.01096 dx.doi.org/10.7554/eLife.01096


Weitere Informationen von
Dr. Antje Burse, +49 3641 57-1265, aburse [at] ice.mpg.de
Prof. Dr. Wilhelm Boland, +49 3641 571200, boland [at] ice.mpg.de